New Allocator Manual

Version 0.1, March 2005

Marcus Crestani

Copyright (©) 2005 Marcus Crestani.

Version 0.1, March 2005.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the section entitled “GNU General
Public License” is included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the section entitled
“GNU General Public License” may be included in a translation approved by the Free
Software Foundation instead of in the original English.

Chapter 1: Introduction 1

1 Introduction

This manual provides information about the new allocator, called ‘mc-alloc’. It describes
the changes and the rationale to replace the old XEmacs allocator. This document will once
be merged into the XEmacs Internals Manual.

The allocator, which was in XEmacs for a couple of years and which is still used by de-
fault, is referred to as the “old allocator”. The newly written allocator, which can be enabled
configuring with ‘--enable-mc-alloc’, is called the “new allocator” in the following.

This document and the new allocator were written by Marcus Crestani.

mailto:crestani@xemacs.org

New Allocator Manual

Chapter 2: Basics 3

2 Basics

An allocator is part of a memory manager. It administrates free memory and serves
memory needs of programs. Management of free memory is difficult, since memory usually
gets fragmented during execution of a program, and because memory is allocated and freed
frequently. In an automatically managed heap, the freeing is usually done by a garbage
collector.

To keep fragmentation minimal, an allocator has to find the best fitting spot where to
allocate a new object as fast as possible. This can be done by maintaining a data structure
called free list. It contains free contiguous blocks of memory of a certain size. If memory is
requested, the free list is traversed to find a fitting block of memory.

First, a few words about the old XEmacs allocator. The old allocator has several ways
to handle different kinds of Lisp objects. Each object is allocated by using its own free list
algorithm:

e Simple data types, whose values directly represent the contents of the Lisp object (i.e.
integers and characters). These objects are not managed by the allocator because they
do not occupy space in the heap.

e Lrecords are rather small Lisp objects. They are allocated on the heap. According to
their type they are allocated in FROB blocks. This includes the objects that are most
common and relatively small (i.e. cons cells, strings, subrs, floats, compiled functions,
symbols, extents, events, and markers). Lrecords of one type have the same size. Thus,
they can be held in fix-sized blocks. The old allocator maintains data structures for
each object’s fixed sized blocks, called FROB blocks.

e [crecords are also allocated on the heap, but they are individually malloc () ed, because
they have variable sizes. Usually, less frequently used and bigger objects are classified
lcrecords. The old allocator does not really manage those kinds of Lisp objects, it
passes the allocation to the system malloc, which is not maximally efficient.

e There are a couple of special case allocations:

e Strings are allocated in two parts, a fix-size object (containing the length, property
list, and a pointer to the actual data) as a Irecord in frob blocks, whereas the
actual string data is allocated separately. For short strings, the string data is kept
in so called string-chars blocks, which get compactified (and thus relocated) during
garbage collection. Big strings are individually malloc()ed.

e Buffers are also allocated in two parts. The maintainance information about the
buffer is kept in a lcrecord, whereas the buffer content is allocated by the relocating
allocator (where available). The relocating allocator does some optimizations to
make sure, free space is faster returned to the operating system.

o HHHTODOH#H4: There are some more special case objects to be listed here.
For more detailed information see section “Allocation of Objects in XEmacs Lisp” in
XFEmacs Internals Manual.
Other drawbacks of the old allocator are:

e The allocation of Irecords is tightly coupled with the memory manager. It uses a lot of
macros. Therefore the definition of some basic Lisp objects has to be made in alloc.c.

e The finalization of lrecords has a very poor macro interface.

4 New Allocator Manual

e The mark bits are tucked into lrecords and lcreords, which generally leads to bad
locality during mark phase, and therefore to bad caching efficiency. This is bad for
performance.

All these special cases and drawbacks lead to a large and complex allocator code. This
goes hand in hand with a complicated interface. Thus, the code of the old allocator is very
hard to maintain.

The final goal of all the work done in the area of memory management is to replace
XEmacs’s primitive garbage collector. Therefore a clean and straight forward interface to
the allocator is needed.

Writing the new allocator was not the hard part of the work. The problem was to hook
it into XEmacs and identify all special cases and clean up all the allocator-dependent code.
This also led to modifications to the portable dumper and the garbage collection algorithms
(without improving them).

In Chapter 3 [The New Allocator|, page 5, I describe the functionality and the basic
algorithms of the new allocator. Very usefull might be Section 3.12 [Glossary|, page 12. To
get a quick overview about the new allocator’s inteface, see Section 3.13 [Interface to the
New Allocator], page 12.

The changes to the XEmacs sources are described in Chapter 4 [Changes to XEmacs],
page 15.

You can find a list with unresolved issues in Chapter 5 [TODO], page 35.

To document the current state of the work, I did some benchmarking. See Chapter 6
[Benchmarks|, page 37.

Please keep in mind that the new allocator is work in progress!

Chapter 3: The New Allocator 5

3 The New Allocator

The ideas and algorithms are based on the allocator of the Boehm-Demers-Weiser
conservative garbage collector. See http://www.hpl.hp.com/personal/Hans_
Boehm/gc/index.html.

3.1 Three-Level Allocation

The new allocator efficiently manages the allocation of Lisp objects by minimizing the
number of times malloc() and free() are called. The allocation process has three layers
of abstraction:

1. It allocates memory in very large chunks called heap sections.

2. The heap sections are subdivided into pages. The page size is determined by the
constant PAGE_SIZE. It holds the size of a page in bytes.

3. One page consists of one or more cells. Each cell represents a memory location for an
object. The cells on one page all have the same size, thus every page only contains
equal-sized objects.

If an object is bigger than page size, it is allocated on a multi-page. Then there is only
one cell on a multi-page (the cell covers the full multi-page). Is an object smaller than %
PAGE_SIZE, a page contains several objects and several cells. There is only one cell on a
page for object sizes from % PAGE_SIZE to PAGE_SIZE (whereas multi-pages always contain
only one cell).

Only in layer one malloc() and free() are called.

3.2 Size Classes and Page Lists

Meta-information about every page and multi-page is kept in a page header. The page
header contains some bookkeeping information like number of used and free cells, and
pointers to other page headers. The page headers are linked in a page list.

Every page list builds a size class. A size class contains all pages (linked via page headers)
for objects of the same size. The new allocator does not group objects based on their type,
it groups objects based on their sizes.

Here is an example: A cons contains a 1lrecord_header, a car and cdr field. Altogether
it uses 12 bytes of memory (on 32 bits machines). All conses are allocated on pages with a
cell size of 12 bytes. All theses pages are kept together in a page list, which represents the
size class for 12 bytes objects. But this size class is not exclusively for conses only. Other
objects, which are also 12 bytes big (e.g. weak-boxes), are allocated in the same size class
and on the same pages.

The number of size classes is customizable, so is the size step between successive size
classes.

http://www.hpl.hp.com/personal/Hans_Boehm/gc/index.html
http://www.hpl.hp.com/personal/Hans_Boehm/gc/index.html

6 New Allocator Manual

3.3 Used and Unused Heap

The memory which is managed by the allocator can be divided in two logical parts:

The used heap contains pages, on which objects are allocated. These pages are com-
pletely or partially occupied. In the used heap, it is important to quickly find a free spot
for a new object. Therefore the size classes of the used heap are defined by the size of the
cells on the pages. The size classes should match common object sizes, to avoid wasting
memory.

The unused heap only contains completely empty pages. They have never been used or
have been freed completely again. In the unused heap, the size of consecutive memory tips
the scales. A page is the smallest entity which is asked for. Therefore, the size classes of
the unused heap are defined by the number of consecutive pages.

The parameters for the different size classes can be adjusted independently, see Sec-
tion 3.3.1 [Adjust Size Classes of the Used Heap|, page 6 and Section 3.3.2 [Adjust Size
Classes of the Unused Heap], page 6.

3.3.1 Adjust Size Classes of the Used Heap

Adjust the size classes in mc-alloc.h:

/* Heap used list constants: In the used heap, it is important to
quickly find a free spot for a new object. Therefore the size
classes of the used heap are defined by the size of the cells on
the pages. The size classes should match common object sizes, to
avoid wasting memory. */

/* Minimum object size in bytes. */
#define USED_LIST_MIN_OBJECT_SIZE 8

/* The step size by which the size classes increase (up to upper
threshold). This many bytes are mapped to a single used list: */
#define USED_LIST_LIN_STEP 4

/* The upper threshold should always be set to PAGE_SIZE/2, because if
a object is larger than PAGE_SIZE/2 there is no room for any other
object on this page. Objects this big are kept in the page list of
the multi-pages, since a quick search for free spots is not
needed for this kind of pages (because there are no free spots).
PAGE_SIZES_DIV_2 defines maximum size of a used space list. */

#define USED_LIST_UPPER_THRESHOLD PAGE_SIZE_DIV_2

3.3.2 Adjust Size Classes of the Unused Heap

Adjust the size classes in mc-alloc.h:

/* Heap free list constants: In the unused heap, the size of
consecutive memory tips the scales. A page is smallest entity which

Chapter 3: The New Allocator 7

is asked for. Therefore, the size classes of the unused heap are
defined by the number of consecutive pages. */

/* Sizes up to this many pages each have their own free list. */

#define FREE_LIST_LOWER_THRESHOLD 32

/* The step size by which the size classes increase (up to upper
threshold). FREE_LIST_LIN_STEP number of sizes are mapped to a
single free list for sizes between FREE_LIST_LOWER_THRESHOLD and
FREE_LIST_UPPER_THRESHOLD. */

#define FREE_LIST_LIN_STEP 8

/* Sizes of at least this many pages are mapped to a single free
list. Blocks of memory larger than this number are all kept in a
single list, which makes searching this list slow. But objects that
big are really seldom. */

#define FREE_LIST_UPPER_THRESHOLD 256

3.4 Mapping of Heap Pointers to Page Headers

For caching benefits, the page headers and mark bits are stored separately from their
associated page. During garbage collection (i.e. for marking and freeing objects) it is
important to identify the page header which is responsible for a given Lisp object.

To do this task quickly, I added a two level search tree: the upper 10 bits of the heap
pointer are the index of the first level. This entry of the first level links to the second
level, where the next 10 bits of the heap pointer are used to identify the page header. The
remaining bits point to the object relative to the page.

On architectures with more than 32 bits pointers, a hash value of the upper bits is used
to index into the first level.

3.5 Mark Bits

For caching purposes, the mark bits are no longer kept within the objects, they are kept
in a separate bit field.

Every page header has a field for the mark bits of the objects on the page. If there are
less cells on the page than there fit bits in the integral data type EMACS_INT, the mark bits
are stored directly in this EMACS_INT.

Otherwise, the mark bits are written in a separate space, with the page header pointing
to this space. This happens to pages with rather small objects: many cells fit on a page,
thus many mark bits are needed.

Use the following functions/macros:

void set_mark_bit (void *ptr, EMACS_INT value)
Set the mark bit of the object pointed to by ptr to value.

EMACS_INT get_mark_bit (void *ptr)
Return the mark bit of the object pointed to by ptr.

8 New Allocator Manual

bool MARKED_P(ptr)
[MACRO] Returns true if the mark bit of the object pointed to by ptr
is set.

MARK (ptr)
[MACRO] Marks the object pointed to by ptr (sets the mark bit to 1).

UNMARK (ptr)
[MACRO] Unmarks the object pointed to by ptr (sets the mark bit to 0).

3.6 Allocate Memory

Use

void *mc_alloc (size_t size)
Returns a pointer to a newly allocated block of memory of given size.

to request memory from the allocator.
This is how the new allocator allocates memory:
1. Determine the size class of the object.
2. Is there already a page in this size class and is there a free cell on this page?
e YES
3. Unlink free cell from free list, return address of free cell. DONE.
e NO
3. Is there a page in the unused heap?
e YES
4. Move unused page to used heap.
5. Initialize page header, free list, and mark bits.
6. Unlink first cell from free list, return address of cell. DONE.
e NO
4. Expand the heap, add new memory to unused heap [go back to 3.
and proceed with the YES case].

The allocator puts partially filled pages to the front of the page list, completely filled
ones to the end. That guarantees a fast terminating search for free cells. Are there two

successive full pages at the front of the page list, the complete size class is full, a new page
has to be added.

3.7 Expand Heap

To expand the heap, a big chunk of contiguous memory is allocated using malloc().
These pieces are called heap sections. How big a new heap section is (and thus the growth
of the heap) is adjustable:

Chapter 3: The New Allocator 9

/* Heap growth constants. Heap increases by any number between the
boundaries (unit is PAGE_SIZE). */

#define MIN_HEAP_INCREASE 32

#define MAX_HEAP_INCREASE 256 /* not used */

/* Every heap growth is calculated like this:
needed_pages + (HEAP_SIZE / (PAGE_SIZE * HEAP_GROWTH_DIVISOR)).
So the growth of the heap is influenced by the current size of the
heap, but kept between MIN_HEAP_INCREASE and MAX_HEAP_INCREASE
boundaries.
This reduces the number of heap sectors, the larger the heap grows
the larger are the newly allocated chunks. */

#define HEAP_GROWTH_DIVISOR 3

This approach keeps the number of heap sections small: the bigger the heap grows, the
bigger the heap sections get. If all pages of a heap section are freed, the complete heap
section is returned to the operating system by using free().

3.8 Free Memory

One optimization in XEmacs is that locally used Lisp objects are freed manually (the
memory is not wasted till the next garbage collection). Therefore the new allocator provides
this function:

void mc_free (void *ptr)
Frees the object pointed to by ptr.

This function is also used internally during sweep phase of the garbage collection.
This is how it works in detail:

1. Use pointer to identify page header (use lookup mechanism described in Section 3.4
[Mapping of Heap Pointers to Page Headers|, page 7).

2. Mark cell as free and hook it into free list.
3. Is the page completely empty?
e YES
4. Unlink page from page list.
5. Remove page header, free list, and mark bits.
6. Move page to unused heap.
e NO
4. Move page to front of size class (to speed up allocation of objects).
If the last object of a page is freed, the empty page is returned to the unused heap. The
allocator tries to coalesce adjacent pages, to gain a big piece of contiguous memory. The
resulting chunk is hooked into the according size class of the unused heap. If this created

a complete heap section, the heap section is returned to the operating system by using
free().

10 New Allocator Manual

3.9 Allocator and Garbage Collector

The different way the new allocator handles Lisp objects lead to some changes in the
garbage collector. These changes are not improving the algorithms significantly, but they
are simplifying the interface and thus provide a good basis for any future garbage collector
changes.

In the following, the additional functions provided by the allocator especially for garbage
collection are described. The changes to the XEmacs sources caused by these functions are
described in Chapter 4 [Changes to XEmacs|, page 15.

3.9.1 Allocator and Finalization

The new allocator provides finalization mechanisms to be used by the garbage collector.
The provided functions are described here:

void *mc_finalize (void)
Runs MC_ALLOC_CALL_FINALIZER on all unmarked objects in the used heap.

The finalizer of every unmarked object is called. The macro MC_ALLOC_CALL_FINALIZER
has to be defined and call the finalizer of the object. For Lisp objects it looks like this:

/* Tell mc-alloc how to call a finalizer. */
#define MC_ALLOC_CALL_FINALIZER(ptr)
{
Lisp_Object MCACF_obj = wrap_pointer_1 (ptr);
struct lrecord_header *MCACF_lheader = XRECORD_LHEADER (MCACF_obj);
if (XRECORD_LHEADER (MCACF_obj) && LRECORDP (MCACF_obj)
&& 'LRECORD_FREE_P (MCACF_lheader))
{
const struct lrecord_implementation *MCACF_implementation
= LHEADER_IMPLEMENTATION (MCACF_lheader);
if (MCACF_implementation && MCACF_implementation->finalizer)
MCACF_implementation->finalizer (ptr, 0);

PP A A O

b
} while (0)

3.9.2 Sweep Phase

With the new allocator, I was able to simplify the sweep phase significantly: sweep
functions for every single Irecord are no longer needed. A call to

void* mc_sweep (void)
Frees all unmarked objects in the used heap.

does all the work for the garbage collector. It visits all used pages and frees all the umarked
objects.

Chapter 3: The New Allocator 11

3.10 Allocator and Dumper

The new allocator provides the following functionality for the dumper:

void *mc_finalize_for_disksave (void)
Runs MC_ALLOC_CALL_FINALIZER_FOR_DISKSAVE on all objects in the
used heap.

The finalizer for disksave of every object is called to shrink the dump image. The
finalizer for disksave is applied on every object in the used heap. The macro MC_ALLOC_
CALL_FINALIZER_FOR_DISKSAVE has to be defined and call the finalizer for disksave of the
object. For Lisp objects it looks like this:

/* Tell mc-alloc how to call a finalizer for disksave. */
#define MC_ALLOC_CALL_FINALIZER_FOR_DISKSAVE(ptr)
{
Lisp_Object MCACF_obj = wrap_pointer_1 (ptr);
struct lrecord_header *MCACF_lheader = XRECORD_LHEADER (MCACF_obj);
if (XRECORD_LHEADER (MCACF_obj) && LRECORDP (MCACF_obj)
&& !LRECORD_FREE_P (MCACF_lheader))
{
const struct lrecord_implementation *MCACF_implementation
= LHEADER_IMPLEMENTATION (MCACF_lheader);
if (MCACF_implementation && MCACF_implementation->finalizer)
MCACF_implementation->finalizer (ptr, 1);

PP A O e

+
} while (0)

3.11 Unmanaged Heap

Note: This is a new feature of the allocator, not fully implemented and used yet!

Like used heap, but not managed by the garbage collector. Objects are allocated the
same way, but have to be freed manually. The unmanaged heap is not touched by the sweep
function.

The rationale for the unmanaged heap is: Other data structures than Lisp objects can
be allocated with the new allocator on the unmanaged heap. So they would use the same
efficient abstractions of the new allocater and the calls to malloc and free would be mini-
mized.

#H#H#TODOH#H##: Further examinations and measurements are needed. if there is a
performance benefit, all XEmacs dynamic data structures should probably be allocated that
way.

See Chapter 5 [TODO], page 35: Strings may be a good candidate to be partially
allocated on the unmanaged heap.

void *mc_alloc_unmanaged (size_t size); Returns a pointer to a block of
memory of given size on the unmanaged heap.

void *mc_realloc_unmanaged (void *ptr, size_t size);

12 New Allocator Manual

Modifies the size of the memory block pointed to by ptr. The
Address of the new block of given size is returned.

3.12 Glossary

PAGE_SIZE
Adjustable size of one page

heap section
Big chunk of contiguous memory, which is obtained from the operating system.

page A piece of memory (the size of PAGE_SIZE). Used for allocating objects, which
are smaller then PAGE_SIZE. The memory for a page is taken from a heap
section.

multi-page

Consists of several contiguous PAGE_SIZE-sized pieces memory, for objects larger
than PAGE_SIZE.

cell Storage location for one objects. Depending on the size of the object, there can
be many cells on one page.

object Data structure, which needs to be allocated by the memory manager. Every
object is stored in a cell on a page.

size class One size class contains all objects of one size. Every size class is associated with
a page list.

page list Links all pages with same cell sizes via their page headers.

page header
Contains meta information about the page and the object stored on the page
(like statistics and mark bits).

heap Area in memory where all the objects are allocated.

used heap Contains pages, on which objects are allocated. These pages are completely or
partially occupied.

unused heap
Contains completely empty pages. They have never been used or have been
freed completely again.

unmanaged heap
Like used heap, but not managed by the garbage collector. Objects are allocated
the same way, but have to be freed manually.

3.13 Interface to the New Allocator

e Allocation related functions and macros:

void init_mc_allocator (void) [Function]
Builds and initializes all needed datastructures of the new allocator.

Chapter 3: The New Allocator 13

void * mc_alloc (size_t size) [Function]
Returns a pointer to a newly allocated block of memory of given size on the
used heap.

void mc_free (void *ptr) [Function]

Frees the object pointed to by ptr.

void * mc_realloc (void *ptr, size_t size) [Function]
Modifies the size of the memory block pointed to by ptr. The Address of the
new block of given size is returned.

e Garbage collection related functions and macros:

void set_mark_bit (void *ptr, EMACS_INT value) [Function]
Set the mark bit of the object pointed to by ptr to value.
EMACS_INT get_mark_bit (void *ptr) [Function]
Return the mark bit of the object pointed to by ptr.
EMACS_INT MARKED_P (ptr) [Macro]
Returns true if the mark bit of the object pointed to by ptr is set.
MARK (ptr) [Macro]
Marks the object pointed to by ptr (sets the mark bit to 1).
UNMARK (ptr) [Macro]

Unmarks the object pointed to by ptr (sets the mark bit to 0).

void * mc_finalize (void) [Function]
The finalizer of every not marked object is called. The macro MC_ALLOC_CALL_
FINALIZER has to be defined and call the finalizer of the object.

void * mc_sweep (void) [Function]
All not marked objects of the used heap are freed.

e Portable dumper related functions and macros:

void * mc_finalize_for_disksave (void) [Function]
The finalizer for disksave of every object is called to shrink the dump image. The
macro MC_ALLOC_CALL_FINALIZER_FOR_DISKSAVE has to be defined and call the
finalizer for disksave of the object.

e Functions and macros related with allocation statistics:

Bytecount mc_alloced_storage_size (Bytecount claimed_size, [Function]
struct overhead_stats *stats)
Returns the real size, including overhead, which is actually allocated for an object
with given claimed_size.

mc-alloc-memory-usage [Lisp-Function]
Returns stats about the mc-alloc memory usage. See diagnose.el.

show-mc-alloc-memory-usage [Lisp-Function]
Pretty prints stats about the mc-alloc memory usage. See diagnose.el.

14 New Allocator Manual

e Allocation function for the unmanaged heap:

void * mc_alloc_unmanaged (size_t size) [Function]
Returns a pointer to a newly allocated block of memory of given size on the
unmanaged heap.

void * mc_realloc_unmanaged (void *ptr, size_t size) [Function]
Modifies the size of the memory block pointed to by ptr. The Address of the
new block of given size is returned.

Chapter 4: Changes to XEmacs 15

4 Changes to XEmacs

In this chapter I am explaining all changes I made to the XEmacs sources to add the
new allocator. In every section the according Changelog entries are listed.

4.1 New configure flag for MC_ALLOC

I added a new configure flag ‘-~enable-mc-alloc’ (‘--mc-alloc’ for autoconf 2.13) for
enabling the new allocator.

ChangelLog addition:
New configure flag: ‘MC_ALLOC’:

*x configure.ac (XE_COMPLEX_ARG_ENABLE): Add ‘--enable-mc-alloc’ as
a new configure flag.

*x configure.in (AC_INIT_PARSE_ARGS): Add ‘--mc-alloc’ as a new
configure flag.

*x configure.usage: Add description for ‘mc-alloc’.

src/Changelog addition:

New configure flag: ‘MC_ALLOC’:

* config.h.in: Add new flag ‘MC_ALLOC’.
nt/Changelog addition:

New configure flag: ‘MC_ALLOC’:

* config.inc.samp: Add new flag ‘MC_ALLOC’.
* xemacs.mak: Add flag and configuration output for ‘MC_ALLOC’.

4.2 New files

I added two new files:
1. src/mc-alloc.c
2. src/mc-alloc.h

src/ChangeLlog addition:
New files:

Makefile.in.in: Add new object file mc-alloc.o.
depend: Add new files to dependencies.
mc-alloc.c: New.

mc-alloc.h: New.

16 New Allocator Manual

nt/Changelog addition:
New files:

* xemacs.dsp: Add source files mc-alloc.c and mc-alloc.h.
* xemacs.mak: Add new object file mc-alloc.obj to dependencies.

4.3 Plugging the new allocator into XEmacs

To get the new allocator running, a few changes and code movements were needed to
initialize it correctly.

src/ChangeLlog addition:
Running the new allocator from XEmacs:

* alloc.c (deadbeef_memory): Moved to mc-alloc.c.

* emacs.c (main_1): Initialize the new allocator and add
syms_of_mc_alloc.

* symsinit.h: Add syms_of_mc_alloc.

4.4 Remove old lrecord FROB block allocation

The first step is to replace the FROB block allocation with the new allocator.
I created new lrecord allocation functions:

o If the size of the Irecord is fix, say it equals its size of its struct, then use alloc_
lrecord_type.

e If the size varies, i.e. it is not equal to the size of its struct, use alloc_lrecord and
specify the amount of storage you need for the object.

e Some Irecords, which are used totally internally, use the noseeum_alloc_lrecord func-
tion for the reason of debugging.

e To free a Lisp_Object manually, use free_lrecord.
The allocation functions return a pointer to a storage location for the new object with
a fully initialized lrecord_header.

Handing all the lrecords to the new allocator leads to changes in the way they are
finalized and sweeped (see Section 4.5 [Lrecord finalizer|, page 19).

Additionally, the quite old breathing_space functionality, which always holds a small
amount of memory, which is released if memory is running out, is removed. I think this
feature is not needed anymore today.

src/Changelog addition:

New lrecord allocation and free functiomns:

Chapter 4: Changes to XEmacs

* alloc.c (alloc_lrecord): New. Allocates an lrecord, includes
type checking and initializing of the lrecord_header.

* alloc.c (noseeum_alloc_lrecord): Same as above, but increments
the NOSEEUM cons counter.

* alloc.c (free_lrecord): New. Calls the finalizer and frees the
lrecord.

* lrecord.h: Add lrecord allocation prototypes and comments.

Remove old lrecord FROB block allocation:

* alloc.c (allocate_lisp_storage): Former function to expand
heap. Not needed anymore, remove.

* alloc.c: Completely remove ‘Fixed-size type macros’
* alloc.c (release_breathing_ space): Remove.

* alloc.c (memory_full): Remove release_breathing_space.
* alloc.c (refill_memory_reserve): Remove.

* alloc.c (TYPE_ALLOC_SIZE): Remove.

* alloc.c (DECLARE_FIXED_TYPE_ALLOC): Remove.

* alloc.c (ALLOCATE_FIXED_TYPE_FROM_BLOCK): Remove.

* alloc.c (ALLOCATE_FIXED_TYPE_1): Remove.

* alloc.c (ALLOCATE_FIXED_TYPE): Remove.

* alloc.c (NOSEEUM_ALLOCATE_FIXED_TYPE): Remove.

* alloc.c (struct Lisp_Free): Remove.

* alloc.c (LRECORD_FREE_P): Remove.

* alloc.c (MARK_LRECORD_AS_FREE): Remove.

* alloc.c (MARK_LRECORD_AS_NOT_FREE): Remove.

* alloc.c (PUT_FIXED_TYPE_ON_FREE_LIST): Remove.

* alloc.c (FREE_FIXED_TYPE): Remove.

* alloc.c (FREE_FIXED_TYPE_WHEN_NOT_IN_GC): Remove.

Allocate old lrecords with new allocator:

* alloc.c: DECLARE_FIXED_TYPE_ALLOC removed for all lrecords
defined in alloc.c.

* alloc.c (Fcoms): Allocate with new allocator.

* alloc.c (noseeum_cons): Allocate with new allocator.

* alloc.c (make_float): Allocate with new allocator.

* alloc.c (make_bignum): Allocate with new allocator.

* alloc.c (make_bignum_bg): Allocate with new allocator.

* alloc.c (make_ratio): Allocate with new allocator.

* alloc.c (make_ratio_bg): Allocate with new allocator.

* alloc.c (make_ratio_rt): Allocate with new allocator.

* alloc.c (make_bigfloat): Allocate with new allocator.

* alloc.c (make_bigfloat_bf): Allocate with new allocator.
* alloc.c (make_compiled_function): Allocate with new allocator.
* alloc.c (Fmake_symbol): Allocate with new allocator.

* alloc.c (allocate_extent): Allocate with new allocator.

18

¥ X X X X X XK X X X X X X X *

Garbage

¥ X X X X X X K K K XK X X X X X X X X X K K K X X X X X X

alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.

alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.
alloc.

New Allocator Manual

(allocate_event): Allocate with new allocator.
(make_key_data): Allocate with new allocator.
(make_button_data): Allocate with new allocator.
(make_motion_data): Allocate with new allocator.
(make_process_data): Allocate with new allocator.
(make_timeout_data): Allocate with new allocator.
(make_magic_data): Allocate with new allocator.
(make_magic_eval_data): Allocate with new allocator.
(make_eval_data): Allocate with new allocator.
(make_misc_user_data): Allocate with new allocator.
(Fmake_marker): Allocate with new allocator.
(noseeum_make_marker): Allocate with new allocator.
(make_uninit_string): Allocate with new allocator.
(resize_string): Allocate with new allocator.
(make_string_nocopy): Allocate with new allocator.

O 0O o0 o0 o0 0000000000

Collection:

(GC_CHECK_NOT_FREE) : Remove obsolete assertions.
(SWEEP_FIXED_TYPE_BLOCK) : Remove.
(SWEEP_FIXED_TYPE_BLOCK_1): Remove.
(sweep_conses) : Remove.

(free_cons): Use new allocator to free.
(sweep_compiled_functions): Remove.
(sweep_floats): Remove.

(sweep_bignums): Remove.

(sweep_ratios): Remove.

(sweep_bigfloats): Remove.

(sweep_symbols) : Remove.

(sweep_extents) : Remove.

(sweep_events): Remove.

(sweep_key_data): Remove.

(free_key_data): Use new allocator to free.
(sweep_button_data): Remove.
(free_button_data): Use new allocator to free.
(sweep_motion_data): Remove.
(free_motion_data): Use new allocator to free.
(sweep_process_data): Remove.
(free_process_data): Use new allocator to free.
(sweep_timeout_data): Remove.
(free_timeout_data): Use new allocator to free.
(sweep_magic_data): Remove.

(free_magic_data): Use new allocator to free.
(sweep_magic_eval_data): Remove.
(free_magic_eval_data): Use new allocator to free.
(sweep_eval_data): Remove.

(free_eval_data): Use new allocator to free.

O 0O o0 0000000 0000000000000 000O00O0

Chapter 4: Changes to XEmacs 19

* alloc.c (sweep_misc_user_data): Remove.

* alloc.c (free_misc_user_data): Use new allocator to free.

* alloc.c (sweep_markers): Remove.

* alloc.c (free_marker): Use new allocator to free.

* alloc.c (garbage_collect_1): Remove release_breathing_space.
* alloc.c (gc_sweep): Remove all the old lcrecord and lrecord

related stuff. Sweeping now works like this: compact string
chars, finalize, sweep.

* alloc.c (common_init_alloc_early): Remove old lrecord
initializations, remove breathing_space.

* emacs.c (Fdump_emacs): Remove release_breathing_space.

* lisp.h: Remove prototype for release_breathing_space.

* lisp.h: Adjust the special cons mark makros.

4.5 Lrecord finalizer

Finalization for Irecords was done by the ADDITIONAL_FREE_* macros. This was a rather
poor way doing it and was tightly coupled with the garbage collector. Lrecords now have
real finalization functions. I transformed the macros to functions and added them to the
Irecord definition.

Strings are more special: for more information about strings, see Section 4.10 [Strings],
page 28.

src/Changelog addition:
Lrecord Finalizer:

* alloc.c: Add finalizer to lrecord definition.

* alloc.c (finalize_string): Add finalizer for string.

* bytecode.c: Add finalizer to lrecord definition.

* bytecode.c (finalize_compiled_function): Add finalizer for
compiled function.

* marker.c: Add finalizer to lrecord definition.

* marker.c (finalize_marker): Add finalizer for marker.

These changes build the interface to mc-alloc:

* lrecord.h (MC_ALLOC_CALL_FINALIZER): Tell mc-alloc how to
finalize lrecords.

* lrecord.h (MC_ALLOC_CALL_FINALIZER_FOR_DISKSAVE): Tell
mc-alloc how to finalize for disksave.

4.6 Unify Irecords and lcrecords

The distinction between Irecords and lcrecords, which was justified only by their different
ways of allocation, is not needed any longer. Thus, out of the two different old 1record_
header and lcrecord_header I made one new lrecord_header:

20 New Allocator Manual

struct lrecord_header

{

/* Index into lrecord_implementations_table[]. Objects that have been
explicitly freed using e.g. free_cons() have lrecord_type_free in
this field. */

unsigned int type :8;

/* 1 if the object is readonly from lisp */

unsigned int lisp_readonly :1;

/* The ‘free’ field is a flag that indicates whether this lrecord
is currently free or not. This is used for error checking and
debugging. */

unsigned int free :1;

/* The ‘uid’ field is just for debugging/printing convenience.
Having this slot doesn’t hurt us much spacewise, since the
bits are unused anyway. */

unsigned int uid :22;

b

Note: the mark bits are removed from the lrecord_header, the new allocator keeps
track of the mark bits in a separate location.

Some functions conditioning on Irecord or lcrecord could be simplified. Also, I adjusted
the comments to reflect the new situation.

src/ChangeLlog addition:
Unify lrecords and lcrecords:

* lisp.h (struct Lisp_String): Adjust string union hack to

new lrecord header.

* lrecord.h: Adjust comments.

* lrecord.h (struct lrecord_header): The new lrecord header
includes type, lisp-readonly, free, and uid.

* lrecord.h (set_lheader_implementation): Adjust to new
lrecord_header.

* lrecord.h (struct lrecord_implementation): The field basic_p
for indication of an old lrecord is not needed anymore, remove.
* lrecord.h (MAKE_LRECORD_IMPLEMENTATION): Remove basic_p.

* lrecord.h (MAKE_EXTERNAL_LRECORD_IMPLEMENTATION): Remove
basic_p.

* lrecord.h (copy_sized_lrecord): Remove distinction between
old lrecords and lcrecords.

* lrecord.h (copy_lrecord): Remove distinction between old
lrecords and lcrecords.

* lrecord.h (zero_sized_lrecord): Remove distinction between
old lrecords and lcrecords.

Chapter 4: Changes to XEmacs 21

* lrecord.h (zero_lrecord): Remove distinction between old
lrecords and lcrecords.

4.7 Remove Icrecords and Icrecord lists

The next step was the allocation of the former lcrecords with the new allocator. The
lcrecord lists were only built to keep track of lcrecords within the old allocator. This data
structure was the reason for various hacks (e.g. XD_FLAG_FREE_LISP_OBJECT during KKCC
marking). The lcrecord lists are not needed any more, they are completely removed.

All other functions used to manage old lcrecords are also removed, allocation is done by
the new lrecord allocation functions described above. From now on there is only one kind
of lisp object allocated on the heap: the Irecord.

The various Lisp objects all over the code allocated as lcrecords are modified: they all
get the new 1lrecord_header and are allocated using the new allocator’s lrecord functions.

Note: These changes occur in many files, but are quite simple.

src/Changelog addition:
Remove lcrecords and lcrecord lists:

* alloc.c (basic_alloc_lcrecord): Not needed anymore, remove.

* alloc.c (very_old_free_lcrecord): Not needed anymore, remove.
* alloc.c (copy_lisp_object): No more distinction between
lrecords and lcrecords.

* alloc.c (all_lcrecords): Not needed anymore, remove.
* alloc.c (make_vector_internal): Allocate as lrecord.
* alloc.c (make_bit_vector_internal): Allocate as lrecord.
* alloc.c: Completely remove ‘lcrecord lists’.

* alloc.c (free_description): Remove.

* alloc.c (lcrecord_list_description): Remove.

* alloc.c (mark_lcrecord_list): Remove.

* alloc.c (make_lcrecord_list): Remove.

* alloc.c (alloc_managed_lcrecord): Remove.

* alloc.c (free_managed_lcrecord): Remove.

* alloc.c (alloc_automanaged_lcrecord): Remove.

* alloc.c (free_lcrecord): Remove.

* alloc.c (lcrecord_stats): Remove.

* alloc.c (tick_lcrecord_stats): Remove.

* alloc.c (disksave_object_finalization_1): Add call to

mc_finalize_for_disksave. Remove the lcrecord way to visit all
objects.

* alloc.c (kkcc_marking): Remove XD_FLAG_FREE_LISP_OBJECT

* alloc.c (sweep_lcrecords_1): Remove.

* alloc.c (common_init_alloc_early): Remove everything related
to lcrecords, remove old lrecord initializatioms,

* alloc.c (init_lcrecord_lists): Not needed anymore, remove.

22

New Allocator Manual

* alloc.c (reinit_alloc_early): Remove everything related to
lcrecords.

* alloc.c (init_alloc_once_early): Remove everything related to
lcrecords.

* buffer.c (allocate_buffer): Allocate as lrecord.

* buffer.c (nuke_all_buffer_slots): Use lrecord functions.

* buffer.c (common_init_complex_vars_of_buffer): Allocate as
lrecord.

* buffer.h (struct buffer): Add lrecord_header.

* casetab.c (allocate_case_table): Allocate as lrecord.

*x casetab.h (struct Lisp_Case_Table): Add lrecord_header.

* charset.h (struct Lisp_Charset): Add lrecord_header.

*x chartab.c (fill_char_table): Use lrecord functions.

* chartab.c (Fmake_char_table): Allocate as lrecord.

*x chartab.c (make_char_table_entry): Allocate as lrecord.

x chartab.c (copy_char_table_entry): Allocate as lrecord.

*x chartab.c (Fcopy_char_table): Allocate as lrecord.

* chartab.c (put_char_table): Use lrecord functions.

* chartab.h (struct Lisp_Char_Table_Entry): Add lrecord_header.
x chartab.h (struct Lisp_Char_Table): Add lrecord_header.

* console-impl.h (struct console): Add lrecord_header.

* console-msw-impl.h (struct Lisp_Devmode): Add lrecord_header.
* console-msw-impl.h (struct mswindows_dialog_id): Add

lrecord_header.

* console.c (allocate_console): Allocate as lrecord.

* console.c (nuke_all_console_slots): Use lrecord functions.

* console.c (common_init_complex_vars_of_console): Allocate as
lrecord.

data.c (make_weak_list): Allocate as lrecord.

data.c (make_weak_box): Allocate as lrecord.

data.c (make_ephemeron): Allocate as lrecord.

database.c (struct Lisp_Database): Add lrecord_header.
database.c (allocate_database): Allocate as lrecord.
device-impl.h (struct device): Add lrecord_header.
device-msw.c (allocate_devmode): Allocate as lrecord.
device.c (nuke_all_device_slots): Use lrecord functions.
device.c (allocate_device): Allocate as lrecord.

dialog-msw.c (handle_question_dialog_box): Allocate as lrecord.
elhash.c (struct Lisp_Hash_Table): Add lrecord_header.
elhash.c (make_general_lisp_hash_table): Allocate as lrecord.
elhash.c (Fcopy_hash_table): Allocate as lrecord.
event-stream.c: Lcrecord lists Vcommand_builder_free_list and
Vtimeout_free_list are no longer needed. Remove.

* event-stream.c (allocate_command_builder): Allocate as lrecord.
* event-stream.c (free_command_builder): Use lrecord functions.
* event-stream.c (event_stream_generate_wakeup): Allocate as
lrecord.

¥ X X X X X X X X X X X X X

Chapter 4: Changes to XEmacs

* event-stream.c (event_stream_resignal_wakeup): Use lrecord

functions.

* event-stream.c (event_stream_disable_wakeup): Use lrecord
functions.

* event-stream.c (reinit_vars_of_event_stream): Lcrecord lists
remove.

events.h (struct Lisp_Timeout): Add lrecord_header.
events.h (struct command_builder): Add lrecord_header.
extents-impl.h (struct extent_auxiliary): Add lrecord_header.
extents-impl.h (struct extent_info): Add lrecord_header.
extents.c (allocate_extent_auxiliary): Allocate as lrecord.
extents.c (allocate_extent_info): Allocate as lrecord.
extents.c (copy_extent): Allocate as lrecord.

faces.c (allocate_face): Allocate as lrecord.

faces.h (struct Lisp_Face): Add lrecord_header.
file-coding.c (allocate_coding_system): Allocate as lrecord.
file-coding.c (Fcopy_coding_system): Allocate as lrecord.
file-coding.h (struct Lisp_Coding_System): Add lrecord_header.
fns.c (Ffillarray): Allocate as lrecord.

frame-impl.h (struct frame): Add lrecord_header.

frame.c (nuke_all_frame_slots): Use lrecord functions.
frame.c (allocate_frame_core): Allocate as lrecord.
glyphs.c (allocate_image_instance): Allocate as lrecord.
glyphs.c (Fcolorize_image_instance): Allocate as lrecord.
glyphs.c (allocate_glyph): Allocate as lrecord.

glyphs.h (struct Lisp_Image_Instance): Add lrecord_header.
glyphs.h (struct Lisp_Glyph): Add lrecord_header.

gui.c (allocate_gui_item): Allocate as lrecord.

gui.h (struct Lisp_Gui_Item): Add lrecord_header.

keymap.c (struct Lisp_Keymap): Add lrecord_header.

keymap.c (make_keymap): Allocate as lrecord.

lisp.h (struct Lisp_Vector): Add lrecord_header.

lisp.h (struct Lisp_Bit_Vector): Add lrecord_header.

lisp.h (struct weak_box): Add lrecord_header.

lisp.h (struct ephemeron): Add lrecord_header.

lisp.h (struct weak_list): Add lrecord_header.

lrecord.h (struct lcrecord_header): Not used, remove.
lrecord.h (struct free_lcrecord_header): Not used, remove.
lrecord.h (struct lcrecord_list): Not needed anymore, remove.
lrecord.h (lcrecord_list): Not needed anymore, remove.
lrecord.h: (enum data_description_entry_flags): Remove
XD_FLAG_FREE_LISP_OBJECT.

* lstream.c: Lrecord list Vlstream_free_list remove.

* lstream.c (Lstream_new): Allocate as lrecord.

* lstream.c (Lstream_delete): Use lrecod functions.

* lstream.c (reinit_vars_of_lstream): Vlstream_free_list
initialization remove.

¥ X X X X X K K K XK X X X X X X X X X K K K K X X X X X X X X X ¥ X ¥

23

24

*
*
*
*

New Allocator Manual

lstream.h (struct lstream): Add lrecord_header.
emacs.c (main_1): Remove lstream initialization.
mule-charset.c (make_charset): Allocate as lrecord.
objects-impl.h (struct Lisp_Color_Instance): Add

lrecord_header.

¥ X X X X X X X X X

objects-impl.h (struct Lisp_Font_Instance): Add lrecord_header.
objects.c (Fmake_color_instance): Allocate as lrecord.
objects.c (Fmake_font_instance): Allocate as lrecord.

objects.c (reinit_vars_of_objects): Allocate as lrecord.
opaque.c: Lcreord list Vopaque_ptr_list remove.

opaque.c (make_opaque): Allocate as lrecord.

opaque.c (make_opaque_ptr): Allocate as lrecord.

opaque.c (free_opaque_ptr): Use lrecord functions.

opaque.c (reinit_opaque_early):

opaque.c (init_opaque_once_early): Vopaque_ptr_list

initialization remove.

¥ X X X X X X X X KX X X X X X X X ¥

opaque.h (Lisp_Opaque): Add lrecord_header.

opaque.h (Lisp_Opaque_Ptr): Add lrecord_header.

emacs.c (main_1): Remove opaque variable initialization.
print.c (default_object_printer): Use new lrecord_header.
print.c (print_internal): Use new lrecord_header.

print.c (debug_p4): Use new lrecord_header.

process.c (make_process_internal): Allocate as lrecord.
procimpl.h (struct Lisp_Process): Add lrecord_header.
rangetab.c (Fmake_range_table): Allocate as lrecord.
rangetab.c (Fcopy_range_table): Allocate as lrecord.
rangetab.h (struct Lisp_Range_Table): Add lrecord_header.

scrollbar.c (create_scrollbar_instance): Allocate as lrecord.
scrollbar.h (struct scrollbar_instance): Add lrecord_header.
specifier.c (make_specifier_internal): Allocate as lrecord.
specifier.h (struct Lisp_Specifier): Add lrecord_header.

symbols.c:
symbols.c (Fmake_variable_buffer_local): Allocate as lrecord.
symbols.c (Fdontusethis_set_symbol_value_handler): Allocate

as lrecord.

¥ ¥ X X X X X X X X X X

symbols.c (Fdefvaralias): Allocate as lrecord.

symeval.h (struct symbol_value_magic): Add lrecord_header.
toolbar.c (update_toolbar_button): Allocate as lrecord.
toolbar.h (struct toolbar_button): Add lrecord_header.
tooltalk.c (struct Lisp_Tooltalk_Message): Add lrecord_header.
tooltalk.c (make_tooltalk_message): Allocate as lrecord.
tooltalk.c (struct Lisp_Tooltalk_Pattern): Add lrecord_header.
tooltalk.c (make_tooltalk_pattern): Allocate as lrecord.
ui-gtk.c (allocate_ffi_data): Allocate as lrecord.

ui-gtk.c (allocate_emacs_gtk_object_data): Allocate as lrecord.
ui-gtk.c (allocate_emacs_gtk_boxed_data): Allocate as lrecord.
ui-gtk.h (structs): Add lrecord_header.

Chapter 4: Changes to XEmacs 25

window-impl.h (struct window): Add lrecord_header.
window-impl.h (struct window_mirror): Add lrecord_header.
window.c (allocate_window): Allocate as lrecord.

window.c (new_window_mirror): Allocate as lrecord.
window.c (make_dummy_parent): Allocate as lrecord.

* X X * *

modules/Changelog addition:
Remove Lcrecords:

*x postgresql/postgresql.c (allocate_pgconn): Allocate with new
allocator.

* postgresql/postgresql.c (allocate_pgresult): Allocate PGresult
with new allocator.

* postgresql/postgresql.h (struct Lisp_PGconn): Add
lrecord_header.

*x postgresql/postgresql.h (struct Lisp_PGresult): Add
lrecord_header.

*x ldap/eldap.c (allocate_ldap): Allocate with new allocator.

* ldap/eldap.h (struct Lisp_LDAP): Add lrecord_header.

4.8 MEMORY_USAGE_STATS

For exact calculation of really used memory of the objects I added the function mc_
malloced_storage_size, which calculates the real size of an object within the heap (in-
cluding overhead). It is modelled after the already existing malloced_storage_size, which
considers the overhead of the underlying allocator like malloc.c, gmalloc.c or system mal-
loc.

The already existing function show-memory-usage pretty prints memory usage infor-
mation about some Lisp objects (buffer, marker, charset, scrollbar, window, and unicode
translation tables). For those Lisp objects the compute_*_usage functions are needed to
calculate the sizes. The calls to malloced_storage_size are replaced by mc_malloced_
storage_size.

show-memory-usage also prints the storage usage of all the other Lisp objects. It gets
the data for this statistics from garbage-collect. The changes needed to collect this
information with the new allocator are described in the next section.

The new function show-mc-alloc-memory-usage prints information about the different

size classes: how big they are, how many objects are allocated in a size class and how much
space is left over.

The output looks like this:

USED HEAP | currently in use | total available
cell-sz #pages| #cells space total % | #cells space total % | %

8 1] 8 64 64 100] 256 2048 2048 100]| 3

26 New Allocator Manual

12 1176 115419 1385028 1385028 100| 199920 2399040 2408448 99|
16 1070| 53840 861440 861440 100| 136960 2191360 2191360 100}

The size class 12 contains 1,176 pages right now (PAGE_SIZE in this example is 2,048
byte). In size class 12 all objects with a size of 12 byte a kept—in XEmacs this is the
storage class for conses (amongst others). So currently 115,491 objects are alife in this size
class, in sum they use 1,385,028 byte. The 100% indicate, that the objects are allocated
efficiently; the cell size fits exactly the object size, there is no wasted memory within one
cell.

The total available space even includes the free cells space. 199,920 cells are available in
this size class. In the per page view, memory is wasted: on a page of 2,048 byte fit 170.6
cells with 12 byte. So on every page 8 byte cannot be used. This explains the difference
between the total available space (which can be used by objects) and the totally allocated
space. Thus, the efficiency only reaches 99%.

The last percentage indicates the filling of this size class: 57% of the cells are currently
in use.

These statistics are conditionalized on the (already existing) flag MEMORY_USAGE_STATS.
lisp/Changelog addition:

MEMORY_USAGE_STATS

* diagnose.el: Add new lisp function to pretty print statistics
about the new allocator.
* diagnose.el (show-mc-alloc-memory-usage): New.

src/Changelog addition:
MEMORY_USAGE_STATS

* alloc.c (fixed_type_block_overhead): Not used anymore, remove.
* buffer.c (compute_buffer_usage): Get storage size from new
allocator.

* marker.c (compute_buffer_marker_usage): Get storage size from
new allocator.

* mule-charset.c (compute_charset_usage): Get storage size from
new allocator.

* scrollbar-gtk.c (gtk_compute_scrollbar_instance_usage): Get
storage size from new allocator.

* scrollbar-msw.c (mswindows_compute_scrollbar_instance_usage):
Get storage size from new allocator.

* scrollbar-x.c (x_compute_scrollbar_instance_usage): Get
storage size from new allocator.

* scrollbar.c (compute_scrollbar_instance_usage): Get storage
size from new allocator.

* unicode.c (compute_from_unicode_table_size_1): Get storage
size from new allocator.

57
39

Chapter 4: Changes to XEmacs 27

* unicode.c (compute_to_unicode_table_size_1): Get storage size
from new allocator.

* window.c (compute_window_mirror_usage): Get storage size from
new allocator.

* window.c (compute_window_usage): Get storage size from new
allocator.

4.9 MC_ALLOC_TYPE_STATS

To achieve backwards compatibility, the code reproduces the statistics returned after a
garbage collection as closely as possible. This information is used by show-memory-usage.
It is based on the way the old allocator works: for every single type a separate free list is
kept. So it was very easy to get statistics about how many objects of a certain type are
currently used and how many free cells for this type are left over (the information about
the free cells for a certain type are lost with the new allocator—free lists are not kept for a
type, they are kept for a certain size).

With the new allocator, it is easy to get information about how many objects of a certain
size are alive. But it is more difficult, to get statistics on a per type basis, since the new
allocator does not distinguish between types anymore.

I added the functionality of getting type-based statistics but it consumes a lot of time.
This is why it is kept conditionalized on a separate flag called MC_ALLOC_TYPE_STATS (which
is set by default in mc-alloc.h).

The statistics are collected by the allocation and free functions of the new allocator.

For details on collection statistics for the Lisp object string, see Section 4.10 [Strings],
page 28.

src/Changelog addition:

MC_ALLOC_TYPE_STATS:

alloc.c (alloc_lrecord): Bump lrecord count.

alloc.c (noseeum_alloc_lrecord): Bump lrecord count.
alloc.c (struct lrecord_stats): Storage for counts.
alloc.c (init_lrecord_stats): Zero statistics.

alloc.c (inc_lrecord_stats): Increase the statistic.
alloc.c (dec_lrecord_stats): Decrease the statistic.
alloc.c (gc_plist_hack): Used to print the information.

alloc.c (Fgarbage_collect): Return the collected information.
mc-alloc.c (remove_cell): Decrease lrecord count.

mc-alloc.h: Set flag MC_ALLOC_TYPE_STATS.

emacs.c (main_1): Init lrecord statistics.

lrecord.h: Add prototypes for *_lrecord_stats.

¥ X X X X X X X X X X X

28 New Allocator Manual

4.10 Strings

Strings are allocated in two parts, a fix-sized object (containing the length, property list,
and a pointer to the actual data) as a lrecord in frob blocks, whereas the actual string data
is allocated separately. For short strings, the string data is kept in so called string-chars
blocks, which get compactified (and thus relocated) during garbage collection. Big strings
are individually mallocd.

For now, the allocation of strings in two parts is still kept, but will change in the future.
See Chapter 5 [TODO], page 35 for future plans.

The old allocator kept track about the number of living short and big strings. It used
the UNMARK _string macro to update the statistics. The UNMARK_* macros were called
after the garbage collection to reset the mark bits within the objects to zero. This hack
to the unmarking phase is no longer possible with the new allocator (the mark bits can be
zeroed more efficiently). It leads to a drawback for strings:

e There are no more statistics about short and big strings available.
e The debug_string_purity functionality was also done in the UNMARK_string macro, and

is now gone as well.

Again, the current way strings are handeled is just an interim solution: See Chapter 5
[TODO], page 35 for future work on strings.

src/ChangelLog
Strings:
* alloc.c (Fmake_string): Initialize ascii_begin to zero.
* alloc.c (gc_count_num_short_string_in_use): Remove.
* alloc.c (gc_count_string_total_size): Remove.
* alloc.c (gc_count_short_string_total_size): Remove.
* alloc.c (debug_string_purity): Remove.
* alloc.c (debug_string_purity_print): Remove.
* alloc.c (sweep_strings): Remove.

4.11 Remove static C-readonly Lisp objects

One of my goals was to have all Lisp objects be treated the same way, they should all be
managed by the new allocator. But many Lisp objects are built statically e.g. Lisp_Subr
and Lisp_Symbol_Value_Forward. They were denoted as C-readonly Lisp objects, with
the c-readonly bit set in the old Irecord header.

To have them managed by the new allocator, the objects are allocated dynamically and
the contents of the static structs are copied to their locations in the heap. They now can
be treated as normal Lisp objects without any write restrictions. This also leads to a better
locality, the alife objects live in the same memory area.

src/ChangeLog addition:

Remove static C-readonly Lisp objects:

Chapter 4: Changes to XEmacs

*
*

alloc.c (c_readonly): Not needed anymore, remove.
alloc.c (GC_CHECK_LHEADER_INVARIANTS): Remove some obsolete

lheader invariants assertions.

¥ X X X X X X ¥

buffer.c (DEFVAR_BUFFER_LOCAL_1): Allocate dynamically.
console.c (DEFVAR_CONSOLE_LOCAL_1): Allocate dynamically.
gpmevent.c: Indirection via MC_ALLOC_Freceive_gpm_event.
gpmevent.c (Fgpm_enable): Allocate dynamically.

gpmevent.c (syms_of_gpmevent): Allocate dynamically.

lisp.h (C_READONLY): Not needed anymore, remove.

lisp.h (DEFUN): Allocate dynamically.

lrecord.h (C_READONLY_RECORD_HEADER_P): Not needed anymore,

remove.

*

lrecord.h (SET_C_READONLY_RECORD_HEADER): Not needed anymore,

remove.

*

*
*
*
*

symbols.c (guts_of_unbound_marker):

symeval.h (defsubr): Allocate dynamically.

symeval.h (DEFSUBR_MACRO): Allocate dynamically.
symeval.h (DEFVAR_ SYMVAL_FWD): Allocate dynamically.
tests.c (TESTS_DEFSUBR): Allocate dynamically.

4.12 mcpro

29

In some cases (i.e. removing the c-readonly functionality) the heap pointers have to be
added to the root set. The c-readonly property implicitly added these objects to the root
set (made them not collectibile). Since this is gone, I added a new way to add heap pointers
to the root set, called mcpro.

Currently, there are only two spots, where this actually needed:

e strings made with make-string-nocopy

e Qunbound in init_symbols_once_early

To add a heap pointer ptr to the heap set, simply use mcpro (ptr). The pointer is added
to the mcpro dynamic array and used as a root of accessibility during garbage collection.

src/Changelog addition:

Definition of mcpro:

* lisp.h: Add mcpro prototypes.

* alloc.c (common_init_alloc_early): Add initialization for
mCpros.

* alloc.c (mcpro_description_1): New.

* alloc.c (mcpro_description): New.

* alloc.c (mcpros_description_1): New.

* alloc.c (mcpros_description): New.

* alloc.c (mcpro_one_name_description_1): New.

* alloc.c (mcpro_one_name_description): New.

30 New Allocator Manual

* alloc.c (mcpro_names_description_1): New.

* alloc.c (mcpro_names_description): New.

* alloc.c (mcpros): New.

* alloc.c (mcpro_names): New.

* alloc.c (mcpro_1): New.

* alloc.c (mc_pro): New.

* alloc.c (garbage_collect_1): Add mcpros to root set.

Usage of mcpro:

* alloc.c (make_string_nocopy): Add string to root set.
* symbols.c (init_symbols_once_early): Add Qunbound to root set.

4.13 Changes to the Portable Dumper

After loading the dump image the objects are living in a read-only memory area, with
no allocator information given. I changed this behaviour: during loading the dump file the
dumped objects are handed one by one to the new allocator. Then they are managed by
the new allocator and can be treated as normal objects without any restrictions: they can
be overwritten and even be freed during garbage collection.

To achieve this, the storage for the objects is dynamically allocated, the object is copied
from the dumped data to the new heap location, and the pointers in the dumped objects
are adjusted. This all happens at the time, the dump file is loaded. My changes are slightly
slowing down the process of loading the dump file, for the benefit of creating fully privileged
objects, efficiently managed by the new allocator.

For the relocation at load time more information about the dumped objects is needed
than there is currently provided. I added more information about the objects to the dump
file:

e the element count (for array-like data structures).
e the size of the object
e the address of the object’s position in the dumped data

This data is currently called ‘mc-allocation-table’.

With count and size the right amount of storage can be allocated for the object. The
object’s position is used to build a lookup table, where the object’s position within the
dumped data is used to map to the new address in the heap. This lookup table is used for
relocation: by using the relocation table from the dump file all pointers are identified and
updated with the result of the lookup.

My changes lead to a slightly different structure of the dump file:

0 - header
- dumped objects
stab_offset - mc allocation table (count, size, address) for individual
allocation and relocation at load time.
- nb_cv_data*struct(dest, adr) for in-object externally
represented data

Chapter 4: Changes to XEmacs 31

- nb_cv_ptr*x(adr) for pointed-to externally represented data

- relocation table

- nb_root_struct_ptrs*struct(void *, adr)
for global pointers to structures

- nb_root_blocks*struct(void *, size, info) for global
objects to restore

- root lisp object address/value couples with the count
preceding the list

Loading the dumped data takes the following steps:

1. The elements of the mc-allocation-table are loaded one-by-one. For each Lisp object,
mc_alloc is used to allocate memory; for all other objects, xmalloc is used.

The object is copied from its position in the dumped data to the new memory location.

. The position in the dumped data and the new heap address are used to built the lookup
table.

4. After all dumped objects are restored, the relocation table is used to identify the heap
pointers in the dumped data.

5. With the help of the lookup table all pointers within the objects are updated.
The static variables are updated (with the help of the lookup table).

It occurred, that the hash tables of the dumper uses for address translations are not
performing very good with the new allocator. Therefore, I increased the size of these hash
tables and modified the the hash function, to better suit the new alloctor.

For more information about the dump process in general, see section “Dumping” in
XFEmacs Internals Manual.

src/Changelog
Changes to the Portable Dumper:

* alloc.c (FREE_OR_REALLOC_BEGIN): Since dumped objects can be
freed with the new allocator, remove assertion for !DUMPEDP.
* dumper.c: Adjust comments, increase PDUMP_HASHSIZE.

* dumper.c (pdump_make_hash): Shift address only 2 bytes, to
avoid collisions.

* dumper.c (pdump_objects_unmark): No more mark bits within
the object, remove.

* dumper.c (mc_addr_elt): New. Element data structure for mc
hash table.

* dumper.c (pdump_mc_hash): New hash table: ‘lookup table’.
* dumper.c (pdump_get_mc_addr): New. Lookup for hash table.
* dumper.c (pdump_get_indirect_mc_addr): New. Lookup for
convertibles.

* dumper.c (pdump_put_mc_addr): New. Putter for hash table.
* dumper.c (pdump_dump_mc_data): New. Writes the table for
relocation at load time to the dump file.

* dumper.c (pdump_scan_lisp_objects_by_alignment): New.

32 New Allocator Manual

Visits all dumped Lisp objects.

* dumper.c (pdump_scan_non_lisp_objects_by_alignment): New.
Visits all other dumped objects.

* dumper.c (pdump_reloc_one_mc): New. Updates all pointers

of an object by using the hash table pdump_mc_hash.

* dumper.c (pdump_reloc_one): Replaced by pdump_reloc_one_mc.
* dumper.c (pdump): Change the structure of the dump file, add
the mc post dump relocation table to dump file.

* dumper.c (pdump_load_finish): Hand all dumped objects to the
new allocator and use the mc post dump relocation table for
relocating the dumped objects at dump file load time, free not
longer used data structures.

* dumper.c (pdump_load): Free the dump file.

* dumper.h: Remove pdump_objects_unmark.

* lrecord.h (DUMPEDP): Dumped objects can be freed, remove.

4.14 New configure flag for DUMP_IN_EXEC

Since the dumped data is not used directly, each dumped object has to be handed to the
allocator. Although this is slowing down the start of a dumped XEmacs, the dumped data
can be treated like normal objects, especially they are no longer write protected and can
also be collected if they are not used anymore. See Section 4.13 [Changes to the Portable
Dumper|, page 30 for more details.

The dump image has only to be present in memory while restoring the dumped objects,
which is done immediately after XEmacs is launched. After that, the memory of the dump
image can be freed.

If the dump image is written into the executable, this memory cannot be freed, and thus
the dumped objects are using twice their size in memory (in the dump image and allocated
with the new allocator).

Dumping into the executable is really convenient: you just have to take care about one
file and you don’t have to deal with (e.g. copy into binary directory) ugly .dmp-files, but it
is wasting some memory.

I think, the decision how to deal with it should be left to the user: if the user is picky
about efficient memory usage, he probably wants to have a separate dump file; if the user
does not like to have a separate dump file, he can still dump into the executable. Since
memory is really cheap today and the dump in executable is quite cool, users may cope
with inefficient memory usage.

Therefore I added the configure flag ‘-—enable-dump-in-exec’ which is defaulted to on
without mc-alloc and defaulted to off with mc-alloc (of course this only causes any impact
if the portable dumper is used).

Note: this is the only part of my patch, which is not conditionalized on MC_ALLOC. If
you prefer to have it committed in a separate patch, let me know and I'll do that.

For backwards compatibility, I modified configure.in (for autoconf 2.13) as well es con-
figure.ac (for autoconf 2.59).

Chapter 4: Changes to XEmacs 33

Changelog addition:
DUMP_IN_EXEC:

* Makefile.in.in: Condition the installation of a separate dump
file on !DUMP_ON_EXEC.

x configure.ac (XE_COMPLEX_ARG_ENABLE): Add
‘--enable-dump-in-exec’ as a new configure flag.

* configure.ac: DUMP_IN_EXEC is define as default for PDUMP but
not default for MC_ALLOC.

*x configure.in (AC_INIT_PARSE_ARGS): Add ‘--dump-in-exec’ as a
new configure flag.

* configure.in: DUMP_IN_EXEC is define as default for PDUMP but

not default for MC_ALLOC.
* configure.usage: Add description for ‘dump-in-exec’.

lib-src/Changelog addition:
DUMP_IN_EXEC:

* Makefile.in.in: Only compile insert-data-in-exec if
DUMP_IN_EXEC is defined.

src/Changelog addition:
DUMP_IN_EXEC:

* Makefile.in.in: Linking for and with dump in executable only if
DUMP_IN_EXEC is defined.

* config.h.in: Add new flag ‘DUMP_IN_EXEC’

* emacs.c: Condition dump-data.h on DUMP_IN_EXEC.

* emacs.c (main_1): Flag ‘-si’ only works if dump image is
written into executable.

4.15 Miscellanious

Here are the left overs. Dunno how to categorize this stuff...

src/Changelog addition:
Miscellanious

*x lrecord.h (enum lrecord_type): Added numbers to all types,
very handy for debugging.
* xemacs.def.in.in: Add mc-alloc functions to make them visible

to the modules.

34

New Allocator Manual

Chapter 5: TODO 35

5 TODO

0. Update XEmacs Internals Manual.
Already working on it...
1. Optimize the new allocator.
The new allocator can be optimized in many ways, by adjusting some important con-
stants to better suit the allocation of objects for XEmacs:
e Size of one page (PAGE_SIZE)
e Size classes of the used and unused heap.
e The growth of the heap

I am going to do more testing on this (even thinking about a test suite to determine
optimal values for different systems, in connection with the new garbage collector).

2. Remove the special case allocation for strings.
Merge the separately allocated data part into the Lisp object.

This does not sound hard, but a first simple approach is not working, because a string
can be resized via ‘resize_string’. This leads to a relocation of the string, which leaves
the problem how to update all the pointers to this string.

Another approach, to make the separate allocation somewhat more efficient, was the
usage of the ‘unamanged heap’ of the new allocator (see Section 3.11 [Unmanaged
Heap], page 11) for the data part of the string. This would lead to efficiently allocated
storage and would us allow to get rid of the time consuming compaction of the string
char blocks after every garbage collection. This change should go hand in hand with the
allocation of the dumped non-Lisp objects: instead of allocating them with xmalloc,
they should be allocated on the unmanaged heap. ###TODO###: Think about

this some more!
3. Find other objects with separated out parts and merge them.

Another candidate for this change is a buffer, which is, like a string, allocated in two
parts.

4. NEW GARBAGE COLLECTOR

That is the final goal; with the new allocator a good basis is set.

36

New Allocator Manual

Chapter 6: Benchmarks 37

6 Benchmarks

I ran some benchmarks to document the current state of the work. Please keep in mind
that the new allocator is work in progress and that there are currently no optimizations
made at alll The new allocator will perform best with a new garbage collector.

In this benchmark, I use different configurations for compiling XEmacs. The results are
listed below and allow direct comparison between the old and the new allocator for different
configurations.

I was interested in five different features:

4

mc-alloc The new allocator: ‘-—enable-mc-alloc’

¢

use-kkcc The new mark algorithm: ‘--enable-kkcc’.

pdump The protable dumper: ‘--enable-pdump’
pdump-in-exec
The dump file is stored in the executable: ‘--enable-dump-in-exec’ in con-
nection with ‘--enable-pdump’.
mule Multi language support: ‘-—enable-mule’
If a feature of these five is not listed in the first column of the tables below, it is disabled
in this configuration (‘--disable-*’).

There are two tables below: the first shows some configurations of a non-mule XEmacs,
the second one shows those configurations with a mule-enabled XEmacs.

Here is a description of the collected data:
time measurements
Compare the time it takes XEmacs to complete the following tasks (it measures
the the fully elapsed time from starting the command till it is completed):
check The time needed to run make check:
/usr/bin/time make check
This gives a general overview about the overall performance of
XEmacs.
start The time needed to start XEmacs (i.e. the loading of the dumped
data for pdump-enabled XEmacs). Command:
/usr/bin/time src/xemacs -vanilla -kill
This is especially interesting to compare the dumper modifications
for the new allocator.
bench The time needed to run (bench 1) from the benchmark package.
Measured with the command:

/usr/bin/time src/xemacs -vanilla \
-1 /home/crestani/src/xemacs/bench/bench.el \
-eval "(bench 1)" -kill

This also gives a general overview about the overall performance of
XEmacs.

38 New Allocator Manual

memory usage
This data is collected by using the command top:

src/xemacs -vanilla eval ’(debug-print \
(shell-command-to-string (concat "top -bp " \
(int-to-string (emacs-pid)) " -n 1")))’ -kill

VIRT Virtual Image (kb): The total amount of virtual memory used by
the task. It includes all code, data and shared libraries plus pages
that have been swapped out.

CODE Code size (kb): The amount of physical memory devoted to execu-
talbe code, also known as the ‘text resident set’ size or TRS.

DATA Data+Stack size (kb): The amount of physical memory devoted to
other than executable code, also known as the ‘data resident set’
size or DRS.

file sizes Especially to take a look at the differences between dump image in a separate
file and dump image in the executable.

X€emacs The file size (kb) of the XEmacs executable src/xemacs.
dump The file size (kb) of the XEmacs dump file src/xemacs . dmp.

The benchmarks are run on an up-to-date Linux machine with a 3,0GHz Intel Pentium
4 processor and 512MB memory.

Chapter 6: Benchmarks 39

6.1 Results for no-mule XEmacs

no mule time measurements memory usage [kb] file sizes [kb]
features check start bench VIRT CODE DATA xemacs dump

<no feature> 0:17.89 0:04.74 0:55.72 10.728 4.504 6.224 8.358 -
mc-alloc 0:20.73 0:04.48 1:02.80 18.232 4.468 13.764 8.699 -
pdump 0:17.27 0:04.67 0:54.37 11.148 1.940 9.208 5.491 2.430
mc-alloc pdump 0:20.47 0:04.59 1:03.14 18.652 1.964 16.688 5.728 3.527
pdump-in-exec 0:17.88 0:05.17 0:54.56 11.128 4.308 6.820 10.041 2.430
mc-alloc

pdump-in-exec 0:21.08 0:04.58 1:03.29 22.208 5.512 16.696 10.279 3.527
kkcc 0:21.54 0:05.34 1:02.36 10.700 4.480 6.220 8.372 -
mc-alloc kkcc 0:23.99 0:04.52 1:06.13 18.248 4.492 13.756 8.709 -

kkcc pdump 0:20.17 0:05.13 0:57.47 11.108 1.904 9.204 5.494 2.430
mc—-alloc kkcc

pdump 0:23.30 0:05.76 1:11.00 18.624 1.928 16.696 5.735 3.527
kkcc

pdump-in-exec 0:20.94 0:05.27 0:58.12 11.120 4.296 6.824 10.045 2.430
mc—alloc kkcc
pdump-in-exec 0:23.35 0:04.83 1:07.09 22.144 5.444 16.700 10.286 3.527

#H#H#TODOH#H##: Figure out, where exactly all this memory (8MB difference) is going.

40 New Allocator Manual

6.2 Results for mule-enabled XEmacs

with mule time measurements memory usage [kb] file sizes [kb]
features check start bench VIRT CODE DATA xemacs dump
mule 0:51.70 0:06.73 0:59.65 12.300 5.284 7.016 9.368 -

mc-alloc mule 1:47.69 0:06.25 1:07.50 20.532 5.332 15.200 9.936

mule pdump 0:45.74 0:06.80 0:58.51 12.772 2.092 10.680 5.897 3.121
mc—alloc

mule pdump 1:41.60 0:07.14 1:07.74 21.104 2.116 18.988 6.145 4.540
mule

pdump-in-exec 0:46.53 0:06.50 0:50.72 12.784 5.160 7.624 10.449 3.121
mc-alloc mule
pdump-in-exec 1:42.11 0:06.76 1:08.44 25.632 6.644 18.988 10.696 4.540

mule kkcc 2:49.63 0:07.12 1:12.27 12.336 5.300 7.036 9.378 -
mc—alloc mule
kkcc 3:34.85 0:06.24 1:18.44 20.564 5.352 15.212 9.950 -

mule kkcc

pdump 2:43.18 0:06.95 1:11.51 12.808 2.064 10.744 5.903 3.121
mc—alloc mule
kkcc pdump 3:28.28 0:07.00 1:18.57 21.084 2.104 18.980 6.151 4.540

mule kkcc

pdump-in-exec 2:47.97 0:07.35 1:12.77 12.804 5.132 7.672 10.457 3.121
mc-alloc mule kkcc

pdump-in-exec 3:32.85 0:06.80 1:19.29 25.616 6.632 18.984 10.702 4.540

Index

Index

A

future work 35
get_mark bit 13

H

heap section................ 5

I

init_mc_allocator...............ii.... 12
introduction............. 1

MARK . .. 13
MARKED _P. e 13
me-alloc. ... 5

41
mc-alloCc-memory-usage 13
MC_alloC. ... 13
mc_alloc_unmanaged...................o..... 14
mc_alloced_storage_size 13
mc_finalize 13
mc_finalize_for_disksave 13
me_free. 13
mC_realloCo 13
mc_realloc_unmanaged....................... 14
MC_SWEEP .« v e vttt et ettt et et 13
multi-page 5
PAGE « v e vttt 5
PAGE SIZE ...t 5
set_mark_bit 13
show-mc-alloc-memory-usage 13
todo ..o 35
UNMARK . . .o 13

\%\%

work, future.......... ... 35

42

New Allocator Manual

Short Contents

1 Introduction.eeeeeeeeeesoeoesoeoesocoasoces 1
2 BasSiCS et eeeeeeoeesoessosssessassesssocoossens 3
3 TheNew AlloCAtor v v v v v oo v v v v v v eeeosssesesssnnes 5
4 Changes t0 XEMACS e ¢ v e v oo oo v s v sooseseennoosssss 15
B TODO ...ttt eeeeeeeeeesoeesssssssssssssees 35
6 Benchmarksoeeeeeeeeeeseeoesoconsonons 37

11

New Allocator Manual

Table of Contents

1 Introduction......................., 1
2 Basics........iiiiiiii i e e 3
3 The New Allocator 5
3.1 Three-Level Allocation...................ciiiiiii .. 5

3.2 Size Classes and Page Lists 5

3.3 Used and Unused Heap 5

3.3.1 Adjust Size Classes of the Used Heap 6

3.3.2 Adjust Size Classes of the Unused Heap 6

3.4 Mapping of Heap Pointers to Page Headers................ 7

3.5 Mark Bits ... 7

3.6 Allocate Memory 8

3.7 Expand Heapo 8

3.8 Free Memory ..ot 9

3.9 Allocator and Garbage Collector.......................... 9

3.9.1 Allocator and Finalization...................... 10

3.92 Sweep Phase 10

3.10 Allocator and Dumper............. 10

3.11 Unmanaged Heapco ... 11

312 GlOSSATY . ..ot 12

3.13 Interface to the New Allocator 12

4 Changesto XEmacs.........ccovveeeeeeen.. 15
4.1 New configure flag for MC_LALLOC. 15

4.2 New files 15

4.3 Plugging the new allocator into XEmacs 16

4.4 Remove old Irecord FROB block allocation............... 16

4.5 Lrecord finalizer............ 0 i 19

4.6 Unify Irecords and lcrecords. 19

4.7 Remove lcrecords and lcrecord lists 21

4.8 MEMORY_USAGE _STATS . ..ttt e 25

4.9 MC_ALLOC_TYPE _STATS.\ttt 27

410 SEINGS . oot 27

4.11 Remove static C-readonly Lisp objects.................. 28

412 MCPTO ..o 29

4.13 Changes to the Portable Dumper....................... 30

4.14 New configure flag for DUMP_IN_EXEC 32

4.15 Miscellanioust 33

iii

iv New Allocator Manual

6 Benchmarks............ciiiiiiinn... 37
6.1 Results for no-mule XEmacs 39
6.2 Results for mule-enabled XEmacs 40

	Introduction
	Basics
	The New Allocator
	Three-Level Allocation
	Size Classes and Page Lists
	Used and Unused Heap
	Adjust Size Classes of the Used Heap
	Adjust Size Classes of the Unused Heap

	Mapping of Heap Pointers to Page Headers
	Mark Bits
	Allocate Memory
	Expand Heap
	Free Memory
	Allocator and Garbage Collector
	Allocator and Finalization
	Sweep Phase

	Allocator and Dumper
	Unmanaged Heap
	Glossary
	Interface to the New Allocator

	Changes to XEmacs
	New configure flag for MC_ALLOC
	New files
	Plugging the new allocator into XEmacs
	Remove old lrecord FROB block allocation
	Lrecord finalizer
	Unify lrecords and lcrecords
	Remove lcrecords and lcrecord lists
	MEMORY_USAGE_STATS
	MC_ALLOC_TYPE_STATS
	Strings
	Remove static C-readonly Lisp objects
	mcpro
	Changes to the Portable Dumper
	New configure flag for DUMP_IN_EXEC
	Miscellanious

	TODO
	Benchmarks
	Results for no-mule XEmacs
	Results for mule-enabled XEmacs

	Index

